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strong-coupling limit 
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Ke ice ,  Slovakia 

Received 29 March 1993 

4gstract. We have studied energetic and st~Ctur;il ground-slate pmpenies of the one.dimen- 
sional Falicov-Kipball tpodel in @e Stmngcoupling limit. Using standard perfurbation theory 
we recover some results already obtained (the phase segregation at large interactions) and we 
present some new reslllts conceming the gmund state, e.g., the analytic expmsion for the 
boundary, below which the segregated configuralion cannot be the gmund state, and the phase 
diagram of the model calculated for special periodic (aperiodic) configurations of ions and for 
the case when the ion concqumtion goes to lem. 

1. Introductioh 

The study of electron correlatipn effecp induced by strong, short-ranged interactions in 
Fermi systems is surely at the centre of interest of contemporary solid-state physics. 
The motivation is clearly due to discoveries of new materials such as the heavy-fermion 
compomds or the high-temperature superconductors, to mention only two. Meanwhile it 
is generally accepted that most of the quite unusual properties of these materials such as 
itinerant magnetism, metal-insiilator transitions, metallic crystallization, superconductivity 
etc, are caused by the strongly correlated electrons. Systems of this kind are usually 
described by fermionic lattice models, i.e., models with itinerant quantum-mechanical 
degrees of freedom. The simplest model of this type is the Falicov-Kimball model 
introduced more than two decades ago [I]. 

The one-band spinless version of the Falicov-Kinball model is defined by the following 
Hamiltonian: 

1.j i 

where c: (q) are femionic creation (qnihililtion) operators for the spinless electron at site 
i md wi is the occupation number of the ions, taking the value 1 or 0 at each site according 
to whether the site i is occupied or unoccupied, respectively, by an ion. 

The kinetit energy (the first term of (1)) is due to quantum-mechanical hopping of 
electrons between sites i and j ,  and these intersite hopping transitions are described by 
the general matrix element r i , j .  For the conventional Falicov-Kimball model it is usually 
assumed that ti.j = --I if i ahd j are newst neighbours and t i . j  = 0 otherwise. The second 
term represents an on-site interaction between electrons and ions that can be repulsive 
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(U > 0)  or attractive (U < 0). In this model both the total electron number Ne and the 
total ion number Ni defined by 
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Ne = ZC~C: Ni = z w i  ( 2 )  
i 

are conserved quantities. 
The Falicov-Kimball model was originally introduced [ I ]  to study mixed-valence states 

in rare-earth compounds. There moving panicles play the role of band s electrons and ions 
the role o f f  electrons. It can be also discussed as an approximation to the full Hubbard 
model [2 ] ,  in which only up-spin electrons are allowed to hop and down-spin electrons are 
infinitely massive. Moreover, it was considered by Kennedy and Lieb [3] as a model for 
crystallization. In spite of its simplicity, so far only a few exact results concerning a ground 
state of the Hamiltonian (1) have been obtained. 

( I )  Brandt and Schmidt 141 using a method based on Tchebycheff-Markoff inequalities 
found sharp upper and lower bounds for the ground-state energy in two dimensions. 

( 2 )  Using the same method Gruber et a1 [5 ]  calculated the phase diagram of the model. 
They determined domains in the plane of chemical potentials of electrons and ions, where 
the following ion configurations may be ground states: the checkerboard configuration: the 
completely empty configuration and the fully occupied configuration. 

( 3 )  Kennedy and Lieb [ 3 ]  proved that the ground state has long-range order for all 
dimensions d .  

(4) Recently, Brandt and Mielsch [6] obtained an exact solution in d = W. 
(5) Freericks and Falicov [7] studied the model in one dimension (at present the exact 

solution of the model for d = 1 dimension does not exist). They presented the coherent and 
incoherent phase diagrams calculated numerically for the segregated phase and all periodic 
phases with periods less than nine and Ni = i L ,  $ L ,  where L is the number of lattice 
sites. On the basis of these results they formulated a conjecture, the so-called segregation 
principle, which states the following: in the h i 1  IU/tl --f 03 the segregated phase, which 
is an incoherent mixture of the empty and full lattices with weights (L - Nj) and Ni, is 
the ground state for all values of the electron concentration ne except the specific values 
ne = 1 - ni for U / t  + 03 and ne = ni for U l t  + 03 (ne = N J L ,  ni = Ni/L). 

(6 )  Brandt [SI was the first to analytically prove, that the segregation principle is true. 
He calculated the higher (lower) bound U+ (U-), above (below) which the segregated phase 
is (is not) the ground state of the one-dimensional Falicov-Kimball model. His results show 
that even for reasonably large deviations from the singular point nJ(1 - ni) = 1 the values 
U+ (this quantity is given more precisely) and U- are extremely large. 

In the following sections we use the standard perturbation theory [9] to analyse the 
structure of the ground-state phase diagram of the one-dimensional Falicov-Kimball model 
in the strong-coupling limit. In section 3 we recover some results already obtained by 
Freericks and Falicov [71 and Brandt [SI (e.g. the phase segregation at large U) and in 
section 4 we present some new results concerning the ground state of the model (the 
analytical expression for the boundary U, U-, below which the segregated configuration 
cannot be the ground state, the phase diagram of the model for some special periodic 
(aperiodic) configurations of ions, the phase diagram for ni + 0, etc). 

2. General properties of the model 

For later reference let us first recall some general properties of the Falicov-Kimball model. 
The Hamiltonian (1) can be rewritten in the more convenient form 
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H(w)  = C h i j ( w ) c : c j  
i i  
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(3) 

where 

h;j(w) = t ; j  + U W j 8 j j .  (4) 

Thus for a given ion configuration w = ( w , .  wz,  . . . , W L ]  defined on the one-dimensional 
lattice of L sites with periodic boundary conditions, the Hamiltonian (3) is the second 
quantized version of the single-particle Hamiltonian 

h(w) = T +  UW = 

u w ,  -t 0 ... 0 -t 
--I uwz -t ... 0 0 
0 -t u w ,  ... 0 0 

-t 0 0 ... -t UWI 

so that the investigation of the model (1) is reduced to the investigation of the spectrum of 
h, for different configurations of the ions. 

In spite of its form the model considered is not one of independent particles, as it might 
be thought at first sight because wi is allowed to vary and in the ground state with fixed 
values Ne and Ni, w; must be chosen to minimize the ground-state energy 

where E ( U ,  N e ,  w )  is the ground state energy for given N. and w.  (Here and for the 
remainder of the paper we use the energy scale in which all energies are measured in units 
oft.) ' h o  well known particlshole symmetries specific to the form of the Falicov-Kimball 
model, the ion-occupied-empty-site symmetry and an electron-hole symmetry, yield for 
E(U,  Ne, w )  the following identities: 

E ( U ,  Ne, w') E ( - U ,  Ne, W )  +UN,  (7) 

and 

The first relates ground states for the configuration w = ( W I ,  wz, . . . , W L }  and for its 
conjugate configuration w* = ( I  - W I  , I - W Z ,  . . . , 1 - W L ] ,  and the second relates the ground 
states for Ne electrons and Ne holes. Using these symmetries we can restrict ourselves only 
to the case U > 0 and Ne < Ni, since the remaining cases may be deduced from a 
combination of (7) and (8). 
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3. Perturbative analysis; infinite U 

To show some characteristic features and to define the basic Wncepts of the perturbation 
procedure of the one-dimensional Falicov-Kimball model in the strong-coupling limit let us 
start with the simplest case when IUI + W. Let the interactiod energy of the Hamjltonian 
( I )  be fie unperturbed Hamiltonian and let the kinetic energy be the perturbation. Because 
the matrix W is idempotent, the matrix UW has only two eigenvalues El = 0 and E2 = U. 
They are ( L  - Ni)-fold and Ni-fold degenerate and these degeneracies in consequence 
of a perturbation will have been completely or partly removed. The correspondiy first- 
or&r corrections may be obtained using the standard perturbation theory of the degenerate 
levels [9]. The snaightfonvard procedBre for E ,  = 0 and E? = U leads to the following 
secular equations: 
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E-” det[A(w*) - El]  = 0 

det[A(w) - E l ]  = 0 E N ~ - L  

where A(w)  (A(w* ) )  is the L-square matrix with elements aij = wiwj (a*. ‘J = Wrw; = 
( I  - q ) ( l  - w j ) )  if li - j (  = 1 and zero otherwise, and I is the unit matrix. 

To write the secular equations in this more general form has one advantage, namely it 
allows us to calculate the first-order correction to El = 0 and El = U directly from (9) 
and (10) for an arbitrary configuration of ions. Now, we see that both determinants in (9) 
and ( IO)  for any w = ( W I ,  w2, .. ., W L ]  may be decomposed as 

where Di are determinants of the i-square Jacobi matrices of the form 

E 1 0 ... 0 0 

J =  
0 0 0 ... E 1 
0 0 0 ... 1 E 

and n, denotes their number, However, the solution of the problem D, = 0 for any 
i = 1,2, ..., L may be expressed in the closed form as 

e ( k ,  i) = -2 cos[kn/(i + I ) ]  k = 1.2, ..,, i (13) 

so that the final solution of the secular equations may be obtained at once in terms of 
cO(k, i) and cu(k, i). where the subscripts 0 and U are used to denote the first-order 
corrections to El = 0 and E l  = U, respectively (if these are not necessary we omit 
them). Thus, for any configuration of ions, the total spahum of the model calculated in the 
first-order perturbation theory can be expressed as a combination of the spectra ~ ( k ,  i), and 
the ground-state energy corresponding to fixed values Ne and N, can be found such that we 
gradually occupy by electrons the low-lying energy levels from c(k ,  i). The most important 
question to ask now is which configuration of ions minimizes the energy E(N., N,, w )  
if the total electron number and the total Ion number are fixed, or in other words which 
spectrum calculated by using the procedure outlined above leads to the lowest energy of 
the system. It can be shown [IO] that it is a configuration for which the degeneracy of 
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the energy levels E ,  and E2 is completely removed, i.e. (see (9). (IO)) a configuration 
with the largest connected cluster of unoccupied sites ( E l  = 0) or a configuration with the 
largest connected cluster of occupied sites (E2 = U ) .  Any division of the largest connected 
cluster of unoccupied (occupied) sites into two connected clusters mutually separated by 
occupied (unoccupied) sites increases the energy of the system, and thus the ground-state 
configuration for IUI --f 00 will be the configuration with the largest connect@ cluster of 
unoccupied (occupied) sites-the segregated phase. 

4. Finite interaction strength 

To analyse some energetic and structural ground-state properties of the Falicov-Kimball 
model at large, but finite, U we use the second-order degenerate perturbation theory [9]. 
The scheme consists of diagonalizing the secular matrix with elements 

where V refers to a perturbation term, n, n’ are labels for umperturbed degenerate mound 
states, and m labels states not degenerate with the ground states. For the Falicov-Kimball 
model this scheme leads to the following secular equation: 

det(T’ - El) = 0, (15) 

where the matrix elements TLn, of the Ni- or ( L  - Ni)-square matrix T’ are given by 

If we calculate the second order corrections to the energy level E ,  = 4 ( E 2  = U ) ,  
then n and n’ in (16) denote unoccupied (occupied) sites, whereas m denotes occupied 
(unoccupied) sites and the correct sign in front of the sum is - (+). Before the proof of 
some general properties of the one-dimensional Falicov-Kimball model in the limit of strong 
comlations let us first test the convenience of the above-outlined perturbation procedure 
for studying the ground-state phase diagram of the model. 

In figure 1 we present the phase diagram of the one-dimensional Falicov-Kimball model 
calculated in the framework of perturbation theory for the segregated configuration and 
all periodic configurations with Ni = f L  and periods less than nine: w1 = [ I O . .  .}, 
wz = [I1 ca...}, wg = [ I I l c H l O  ...}, w4 = {I101 ca...], wg = [llllOOoO ...}, 
ws = [ l l l o l o m  . . . I ,  uJ7 = [IIIWI oo...], wg = (ll0110 cHl...}, wg = [llololoo ...), 
WIO = { l l O l ~ l O  ...I. For these periodic configurations the secular equation (15) is 
enormously simplified and can be immediately solved. Putting electrons into the low- 
lying energy levels of the new spectra, one can at once find energies corresponding to these 
configurations. The phase diagram is then determined by comparing the energy of each 
periodic phase with the energy of the segregated phase and plotting the lowest-energy state 
as a function of the electron concentration ne and the interaction strength U. The inset in 
figure 1 shows the exact phase diagram of the model calculated numerically for the same ion 
configurations using the method described in 171. We see that perturbation results reproduce 
surprisingly well the exact results obtained by Freericks and Falicov, even for relatively 
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Figure 1. The phase diagram calculated for the segregated configuration and all periodic 
configurations with N; = f L and periods less than nine. The inset shows the phase diagram 
calculated exactly using the method described in [71. 
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Figure 2. The phase diagram calculated for CI. q, 0. cd. q. q. R,  cg, em, cn.  CIS. m, car 
c ~ m ,  and lhe segregated configuration. A domain denoted .mix*. is a miXNre of many small 
phases. 

small values of interaction constant U n. 5. The fact that perturbation results for U > 5 
reproduce the exact results very well is obviously due to the theorem of Gerschgorin, which 
works in these interval and which states that for any ion configuration the electron stam are 
split into two non-overlapping bands: the lower one bounded to [ - 2 , 2 ] ,  contains exactly 
1 -ai states per site, the higher, bounded from below by U - 2, contains ni states per site, 
which is in agreement with our perturbation results. 

Let us now discuss in detail some structural ground-state properties of the model. 
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Let Ni be arbibary, then the secular equation (15) for the segregated configuration 
ws = ( 1 1 .  .. 100 ... 0) takes the form 

DN = 

h / U - E  - 1  0 .,. 0 0 
-1 - E  -1 ... 0 0 
0 -1 -E . . .  0 0 

0 0 0 ... - E  -1 
0 0 0 ... -1 I / U - E  

and it  can be directly solved, with the result 

~ ( n ,  N) = -2 cos[nn/(N + l)] +[4h/U(N + l)lsin2[nn/(N + 1)l 
- [2(2N -4)/U’(N + 1)2]sinZ[nn/(N + l)]cos[nn/(N + I)] (18) 

where N = L - Nj, I = -1, n = 1.2 . .  . L - Ni if the second-order corrections to 
the ( L  - Ni)-fold degenerate energy level E ,  = 0 are calculated and N = Nj, A = 1, 
n = 1,2,. . . , Ni for the Ni-fold degenerate energy level E2 = U. Comparing ws with 
WZ, w3, w5 one can see that the configurations WZ, w3, and w5 are composed of :L, i L ,  
and L segregated configurations of lengths 4, 6, and 8. and the length of the connected 
clusters of occupied sites in these segregated configurations are 2.3, and 4. Therefore, in the 
strong-coupling limit the energy spectrum corresponding to w2, w3, and w5 may be directly 
obtained using the expression (18). Certainly the same is true for other configurations of 
this kind. In figure 2 we present the phase diagram of the model for the following periodic 
configurations of this kind e,, c3, c4, c5, cs, c7, c ~ ,  CIO. CIZ. cl5. c24. and the segregated 
phase. Here we introduce a new general notation ci = { 11 . . ,100.. . 0 . . .} for the periodic 
configurations composed of connected clusters of occupied and unoccupied sites of length 
i ; c l = { 1 0  ... ) , c ~ = ( 1 1  00...), etc). 

It is seen that all observations made by Freericks and Falicov for periodic phases with 
N, = 4 L and periods less than nine still hold (1) the altemating phase ( 10.. .) is the ground 
state at the half-filled band point (Ne = Ni = $ L )  for all values of interaction strength; 
(2) the phase diagrams are enormously simplified as U increases and the segregated phase 
becomes dominani; and (3) some phases (e.g., e,, c ~ o  ) that disappear from the phase 
diagram as U increases may reappear at larger values of U. Besides the observations of 
Freericks and Falicov we find that new phases c5 .U,. cy,. ..are distributed between the 
segregated phase ws and phases wg and wio. which are gradually suppressed (see figure 3). 
Furthermore, for U > 8 the largest phase islands of the configurations ci (i = 5.6,. . .) are 
distributed regularly in order of increasing i, and this trend still holds when further periodic 
configurations with much larger periods are added. 

We observed that the configuration cLI4 is not the ground state for any value of U 
and ne. The configuration c ~ / 4  = (1  1 . . ,100.. .Ol I . . .loo.. . O )  may however be obtained 
such that we divide the segregated phase ws = (1 1 . . ,100.. .O) into two identical parts. 
The fact that this configuration is not present in the phase diagram of the model indicated 
that division of the segregated phase into two identical parts is energetically unfavourable. 
As was mentioned in the previous section for IU/ --t 03 it is energetically unfavourable 
to divide the large connected cluster of occupied (unoccupied) sites into two connected 
clusters of occupied (unoccupied) sites separated by unoccupied (occupied) sites and thus 
the segregated phase was the ground state of the one-dimensional Falicov-Kimball model 
for all electron concentrations except the specific values ne = 1 - ni and n. = nj . Next 
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Flgure 3. The p h w  diagram calculated for all configurations from figures 1 and 2. The broken 
and full curves are lower bounds for the segregaled configuration dculated for the transitions 
w1 + U I D ~  and rus + I U D ,  respectively. 

Figure 4. The critical inlaaction suength U, as a function of the electron- and ion-density ratio 
n J ( I  -ni l .  

we show that unlike the case 101 -+ CO, for finite U there exists some critical value 
of the electron concentration ne above which the segregated phase is unstable, and the 
large connected cluster of occupied (unoccupied) sites divides into two connected clusters 
mutually separated by unoccupied (occupied) sites. We give the analytical expression for 
this boundary. 

In the general case when the segregated phase consists of two large connected clusters 
of occupied and unoccupied sites of length Ni and L - Nj,  the second-order corrections to 
the ( L  - Ni)-fold degenerate energy level E ,  = 0 are given by (18). Let us now investigate 
how this energy spectrum (it is sufficient to consider only the c&e E l  = 0 and U > 0, since 
the other cases can be obtained by the application of the symmetries (7) and (8)) is changed 
if the connected cluster of unoccupied sites in the segregated configuration is divided into 
two connected clusters of unoccupied sites of lengths N I  and N2 mutually separated by one 
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or more ions. ?.n the second case the seculk equatiod (15) reduces to 

- 1 / U - E  -1 ... 0 0 0 0 ... 0 
- 1  - E  ... 0 0 0 0 ... 0 

0 0 I . .  -E -1  0 0 ... 0 
0 0 ..: - I  - 1 / U - E  b 0 ... 0 
0 0 ... 0 0 - I / U -  E - 1  ... 0 
0 0 ... 0 0 -i - E  ... 0 

0 0 ... 0 0 0 0 l / U - E  

= O  

(19) 

and may be immediately solved since the corresponding determinant of the type L - Ni 
can be written ai D1D2. where determinants D1 ariid Dz of the type N I  and N Z  have the 
form of the dete&inant DN (see (17)), which has already been examined. Theiefore (using 
the expression (le)), the energy spectrum corresponding to the configuration composed of 
two connected clusters of itnoccupied sites separated by two or more ions is given as a 
combination of spedra ~ ( n ,  NI)  and e(n,  Ni). 

Let us denote 

(20) 
m sin ( ( m  + i ) [ n / ( M  + 1)1} 

sin[?r/2(M + l)] 

then the energy of m electrons placed in the m low-lying e$ergy levels of the spectrum 
corresponding t6 the connected cluster of unoccupiid sites of length M can be now written 
as 

2m 2~ - 4  1 S m , -  - U(M + 1) + S (m, "> M + 1 + 4U2(M + l ) z  ( M:I) U ( M + l )  
$(m,  M )  = -. 

2M - 4  
X S  m,- - ( f i 1 )  4U2(M+1)2  

For Ne elections (remember that Ne < L - N i )  the energy of the segregated configuration 
ws with one connected cluster of unoccupied sites of length L - Nj &d the energy 
of a configuration WD,. which consists of two connected clusters of unoccupied sites 
of lengths N I  kd Nz (NI +:Nz = L - Ni) separated by two or more ions, are thus 
E,(N, ,  w d  = E ( N 4 ,  L - N i )  y d  E D ( &  WD,) = E h ,  N 1 ) + E ( N e ' - n o ,  N2) rkpectively, 
where no in the gmund state with a fixed elFctmn number Ne must .be chosen to minimize 
the ground-state energy E D ( N , ,  wh). It can be obtained by taking the integer part of 
( N e  + l)(Ni + 1) / (L  - Ni +2). Comparing these energies one can straightfokardly show 
thai for any electron concentration n, there exists a critical value U = U, of the interaction 
strength, below which ED < E., i.e., for U < Uc the segregated phase is unstable and the 
transition wr. + WD? becomes energetically favourable. A detailed analysis of the inequality 
ED < E, made.for ariy divisioi of the large connected cluster of unoccupied sites into two 
connected clusters of unoccupied sites of lengths NI and N2 separated by two or more ions 
shows that the lowest-energy configuration for U < U, is always the configuration with 
NI = L - Ni 1 and N z  = 1 ,  as it would be expected intuitively. 
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Now, we are ready to give an analytical expression for the b o u n w  U,(N,), below 
which the segregated phase cannot be the ground state of the onedimensional Falicov- 
Kimball model, because the configurations w h  = {~...Ol...lOl,..l) (where the length of 
the connected cluster of unoccupied sites is L - Ni - 1 and the length of the first connected 
cluster of occupied sites is at least two) always have lower energy than that corresponding 
to w* 

The energy spectrum for 6(n.  WD,)  is given as the combination of specmm (18) with 
N = L - Ni - 1 and the single energy level -2/U, therefore 

(22) 
E(Ne, L - Ni - 1 )  for N. < PO 

E D K  W D J  = { E ( N ,  - 1, L - Ni - 1) -2/U for Ne =- PO. 
Here po is the integer part of 

q=[(L-Ni)/a]cos-’(;U(L- Ni)-,/[$U(L- Ni)Jz-$(L-Ni-2)} (23) 

which is defined by the condition 

6(q, L - Ni - 1) = -2111. (24) 

Comparing (22) with the energy of the segregated phase &(Ne, ws)  we obtain the 
analytic expression for the boundaty ( / , (Ne) ,  below which the segregated phase cannot be 
the ground state of the one-dimensional Falicov-Kimball model 

U, = (b - =)/;?a 
where 

a = S [ N , ,  x/(N + I)] - S (Ne - I ,  H/N) 

b = l l / ( N  + 1)1{2Ne+S[Ne,k/(N+ l)]} -(1/N)[2(Nc- l)+S(N.-1,2ir/N)]-2 

c = (S[Ne, x / ( N  + 113 - S [ ( N e .  3nl(N + 1)])}(2N -4)/(N + 1)’ - [ S ( N e  - 1, HlN) 

(N = L - Ni) 

- S ( N e  - I ,  3a/N)](ZN - 6)/N2. 

The critical interaction strength U, as a function of the electron- and ion-density ratio 
&/(I - ni) is plotted in figure 4. We see that even for considerably large deviations from 
the singular point nJ(1 -ni) = 1, the values U, are extremely large, which is in agreement 
with results of Brandt [8]. On the other hand, it should be mentioned that our estimate of 
the lower bound U- Uc, below which the segregated phase cannot be the ground state 
of the model, is better than the estimate of Brandt, who investigated the stability of the 
segregated phase with respect to ‘evaporation’. However, his estimate of the upper bound 
Ut, above which only the segregated phase is the ground state of the model, is quite good 
for &/( I  - n , )  > 0.5 and it together with our results for Uc yields sharp bounds for the 
segregated state. Of course, since our results were obtained in the strong-interaction limit 
using perturbation theory, it is necessary to bound the phase diagram from below with some 
physically reasonable value of the interaction strength Uo, above which the perturbation 
procedure gives reasonable results. Tests, we made (see figure 1) show that this value 
should be relative small (U, Y 5).  
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The critical value U, was obtained for the case when a single unoccupied site and the 
connected cluster of unoccupied sites of length L - Ni - 1 were separated by Ni 2 2 ions. 
Repeating the previous analysis for the case Ni = 1 one can show with some more effort 
that the energy spectrum corresponding to this configuration W D ,  is given as 

&, W D ~ )  = E(n, wh) - [ I / U 2 ( L  - Ni)] sinz[nn/(L - Ni)]/cos[nn/(l - N i ) ]  

for n = 1.2,. . . , L - Ni - 1 and 

r (n  = L - Ni, W D , )  = -2/U. 

Thus the ground state corresponding to wD, has for any electron number Ne lower 
energy than the ground state corresponding to WD* as one would expect. 

If these configuration are taken into account, then the area of stability of the segregated 
phase is considerably reduced in the ground state phase diagram (see figure 3) but it is still 
large enough. Let us note that in the domain where the segregated configuration is stable, 
the U dependence of the ground state energy (which follows from (18)) has qualitatively the 
same form as the exact U dependence of the one-dimensional Hubbard model in the limit of 
strong interactions [ 111. The total U dependence of the one-dimensional Falicov-Kimball 
model calculated for the phase diagram from figure 3 is shown in figure 5. 

-0.10 
n.=0.45 

-0.10 

_I -0.15 ~ -0.15 

=. -0.20 
-0.25 -0 25 

-0.30 -0.30 

-0.35 -0.35 

Coulomb interaction U Electron concentration 

Figure 5. The U dependence of the ground-state Figure 6. The ground-state energy of the one- 
energy of the one-dimensional Falicov-Kimball model dimensional Falimv-Kimball model calculated for 
calculated for the phase diagram shown in figure 3 inmherent mixtures of the segregafed and period-hvo 
(broken curves) and for incoherent mixtures of the phases as a function of ne 
segregated and period-two phases (full curves). 

It was shown above that for finite U there exists some critical value of the electron 
concentration above which the segregated configuration wp cannot be the ground state of 
the model, because there the configuration W D ,  always has lower energy than ws. One can 
ask what happens for WD, for higher band fillings and there are ways to generalize our 
previous ideas. For fixed Ni = f L  we examined all possible incoherent mixtures winCoh(N) 
of the segregated configuration of length N and the alternating configuration of length L-N. 
In agreement with (25) we have found that wincoh(L) ws is the ground state of the model 
for U > U, U‘, and below Ue some incoherent mixture with N # L becomes stable. In 
particular, wincoh(N) ( N  c L) is stable in the narrow domain bounded by UN and UN-1, 
where UN and UN-, can be obtained directly from the conditions E [ N , ,  w ” ” ~ ( N ) ]  = 
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E [ N  e, wincoh ( N  - I ) ]  and E [ &  @'"(N - I ) ]  = E[N. .  wincoh(N - 2)]. Furthermore 
we found that neither periodic configuration from the phase diagram shown in figure 3, 
excluding the alternating phase can, be the ground state of the model if these incoherent 
mixtures are taken into account, and.the altemating phase will be the ground state only for 
Ne = : L .  To investigate whether the ground state corresponding to wineoh is conducting or 
insulating, we compute the quantity A@ = E ( N ,  + 1, Ni)  + E ( N ,  - I ,  Ni)  - 2 E ( N , .  N J .  
(The Ne dependence of the ground-state energy calculated for these incoherent mixtures is 
plotted in figure 6 for three different interaction strengths.) Using the criterion of Kennedy 
and Lieb [3], which states that there is a gap of the second kind at Ne,  Ni if A@ 2 6 > 0, 
with E being independent of the size of the system, we arrived at the conclusion that for all 
Ne c f L the ground state is conducting. 

0 (ni --t I ) .  For NI = 2 we found that 
from among all possible distributions of Ni ions and L - Ni unoccupied sites, the segregated 
configuration is the ground state for U > U,, where U,  is given by (25). If U c U, tiie 
configuration (10100.. .O] is stable. Analogously for all possible distributions of three ions 
and L - 3 unoccupied sites we found that the segregated phase is stable if U > Ucl.  In the 
domain U, < U c U,, the configuration w = (1 10100.. .OJ  is the ground skte and for 
U c U,  the configuration w' = (1010100.. .O] is stable. Here U,, is given by (25) and 
U,, can be obtained from the condition E(N, ,  w) = E(N, ,  w'). 

Finally let us briefly discuss the model for ni 
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