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Abstract, We have studied energetic and structural ground-state properties of the one-dimen-
sional Fa[:cov—szball model in the sttong-coupling limit. Using standard perturbation theory
we recover some results already obtained (the phase segregation at large interactions) and we
present some hew resilts concerning the ground state, e.g., the analytic expression for the

" boundary, below which the sepregated configuration cannot be the ground state, and the phase
diagram of the mode! calculatéd for special periodic (aperiodic) configurations of jons and for
the case when the ion concentration goes to zero.

1. Introduction

The study of electron correlation effects induced by strong, short-ranged interactions in
Fermi systems is surely at the centre of interest of confemporary solid-state physics.
The mativation is clearly due to discoveries of new materials such as the heavy-fermion
compolunds or the high-temperature superconductors, to mention only two. Meanwhile it
is generally accepted that most of the quite unusual properties of these materials such as
itinerant magnetism, metal-insulator transitions, metallic crystallization, superconductivity
ete, are caused by the strongly comelated electrons. Systems of this kind are usually
described by fermionic lattice models, i.e., models with itinerant quantum-mechanical
degrges of freedom. The simplest model of this type is the Falicov-Kimbail model
introduced more than two decades ago [1].

The one-band spiniess version of the Falicov--Kimball model is defined by the following
Hamiltonian:

H =ZI;_1€?‘C_,'+UEW;C?C; 1)
) i

where c+ {c;) are fermionic creation (annihilation} operators for the spinless electron at site
i and w; is the occupatlon number of the ions, taking the value 1 or O at each site according
to whether the site i is occupied or unoccupied, respectively, by an ion,

The kineti¢ energy (the first ferm of (1)) is due to quantum-mechanical hopping of
electrons between sites i and j, and these intersite hopping transitions are described by
the general matrix element £ ;. For the conventional Falicov—Kimball model it is usually
assumed that &, ; = —¢ if i ahd j are nearest neighbours and #; ; = 0 otherwise. The second
terni represents an on-site interaction between electrons and ions that can be repulsive
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7132 P Farkasovsky and I Bat' ko

(U > 0) or attractive (J < 0). In this model both the total electron number N, and the
total ion number ¥; defined by

Ne=Y cte: Ny= w )]
i i

are conserved guantities.

The Falicov-Kimbail model was originally introduced [1} to study mixed-valence states
in rare-earth compounds. There moving particles play the role of band s elecirons and ions
the role of f electrons. It can be also discussed as an approximation to the fuil Hubbard
madel [2], in which only up-spin electrons are allowed to hop and down-spin electrons are
infinitely massive. Morgover, it was considered by Kennedy and Lieb [3] as 2 model for
crystailization, In spite of its simplicity, so far only a few exact results concerning a ground
state of the Hamiltonian (1) have been obtained.

(1) Brandt and Schmidt [4] using a method based on Tchebycheff-Markoff inequalities
found sharp upper and lower bounds for the ground-state energy in two dimensions.

(2) Using the same method Gruber et af [5] calculated the phase diagram of the modei.
They determined domains in the plane of chemical potentials of electrons and ions, where
the following icn configurations may be ground states: the checkerboard configuration; the
completely empty configuration and the fully occupied configuration.

(3) Kennedy and Lieb [3] proved that the ground state has long-range order for all
dimensions 4.

(4) Recently, Brandt and Mielsch [6] obtained an exact solution in d = ca.

(5) Freericks and Falicov [7] studied the model in one dimension (at present the exact
solution of the model for d = 1 dimension does not exist}. They presented the coherent and
incoherent phase diagrams calculated numerically for the segregated phase and all pericdic
phases with periods less than nine and N; = 3L, L, where L is the number of lattice
sites. On the basis of these results they formulated a conjecture, the so-called segrepation
principle, which states the following: in the limit [U//f| — oo the segregated phase, which
is an incoherent mixture of the empty and full lattices with weights (L — N;) and ¥, is
the ground state for ali values of the electron concentration n, except the specific values
ne=l—nforUft - coand ng =n; for U/t — oo (n. = N/L, nj = N;/L).

(6) Brandt [8] was the first to analytically prove, that the segregation principle is true.
He calculated the higher (lower) bound U+ (U ™), above (below) which the segregated phase
is (is not) the ground state of the one-dimensional Falicov—Kimball model. His results show
that even for reasonably large deviations from the singular point r./(1 — n;) = 1 the values
U™ (this quantity is given more precisely) and U~ are extremely large.

In the following sections we use the standard perturbation theory [9] to analyse the
structure of the ground-state phase diagram of the one-dimensional Falicov-Kimball model
in the strong-coupling limit. In section 3 we recover some results already obtained by
Freericks and Falicov [7] and Brandt [8] (e.g. the phase segregation at large U) and in
section 4 we present some new results concerning the ground state of the model (the
analytical expression for the boundary U, = U, below which the segregated configuration
cannot be the ground state, the phase diagram of the model for some special periodic
(aperiodic) configurations of ions, the phase diagram for n; — 0, ete).

2. General properties of the model

For later reference let us first recall some general properties of the Falicov—Kimball model,
The Hamiltonian (1) can be rewritten in the more convenient form
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Hw) =3 hyw)efc; 3)
ij
where
hij(w) = ti; + Uwidy;. 4
Thus for a given ion configuration w = {wy, ws, ..., w.} defined on the one-dimensional

lattice of L sites with periodic boundary conditions, the Hamiltonian (3) is the second
quantized version of the single-particle Hamiltonian

Uw —t 0 0 -t
-t Uwy -t ... 0 0
0 -t Uwsy ... 0 0
hw)=T+UW=3 . . . : : Q)
0 0 ¢ e Uwy g -t
—t 0 0 —t Uwy

so that the investigation of the model (1) is reduced to the investigation of the spectrum of
h, for different configurations of the ions.

In spite of its form the model considered is not one of independent particles, as it might
be thought at first sight because w; is allowed to vary and in the ground state with fixed
values N, and N, w; must be chosen to minimize the ground-state energy

Ec(U, Ne, M) = min (E(U, Neyw)| 3 w; = Ni) (6)

where E(U, N, w) is the ground state energy for given N, and w. (Here and for the
remainder of the paper we use the energy scale in which all energies are measured in units
of ¢.) Two well known particle-hole symmetries specific to the form of the Falicov—Kimball
model, the ion-occupied—empty-site symmetry and an electron—hole symmetry, yield for
E(U, N, w) the following identities:

E(U, Ne, w*) = E(—=U, Ne, w) + UN, Q)
and

EWU,Neyw) = E(—U, L~ N, w)+UN,. 8
The first relates ground states for the configuration w = {w), w2, ..., wr} and for its
conjugate configuration w* = {!—w,, | —ws3, ..., | —w,}, and the second relates the ground

states for N, electrons and N, holes. Using these symmetries we can restrict ourselves only
to the case U > 0 and N, € N, since the remaining cases may be deduced from a
combination of (7} and (8).
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3. Perturbative analysis; infinite U

To show some characteristic features and tp define the basic concepts of the perturbation
procedure of the one-dimensional Falicov—Kimball model in the strong-coupling limit let us
start with the simplest case when |U/| — co. Let the interactiorn energy of the Hamiltonian
(1) be the unperturbed Hamiltonian and let the kinetic energy be the perturbation. Because
the matrix W is idempotent, the matrix &/'W has only two eigenvalues £; =0 and £, = U.
They are (L — N;)-fold and N-fold degenerate and these degeneracies in consequence
of a perturbation will have been completely or partly removed. The corresponding first-
order corrections may be obtained using the standard perturbation theory of the degenerate
levels [9]. The straightforward procedure for £, = 0 and E; = U leads to the following
secular equations:

E~M det{A(w*) —- El] = 0 )
EM-L detfA(w) — EI] =0 (10)

where A(w) (A(w*)) is the L-square matrix with elements ay = wiw; (a; = wjw] =
(A —w)(d —wy)) if i = j| =1 and zero otherwise, and 1 is the unit matrix.

To write the secular equations in this more general form has one advantage, namely it
allows us to calculate the first-order correction to E; = 0 and E; = U directly from (9)
and (10) for an arbitrary configuration of ions. Now, we see that both determinants in (9)
and (10) for any w = {w, wy, ..., w;} may be decomposed as

oi'py...pM" (an

where D; are determinants of the i-square Jacobi matrices of the form

E 1 0 ..0 0
1 E1 ... 00

J=p 1 1o N (12)
0 00 .. E 1
0 00 .. 1 E

and n; denotes their number, However, the solution of the problem D; = 0 for any
i =1,2,..., L may be expressed in the closed form as

e(k, i) = =2 coslkm /(i + 1)] k=1,2,..1 (13)

so that the final solution of the secular equations may be obtained at once in terms of
eq(k, i) and ey(k,f), where the subscripts 0 and U/ are used to denote the first-order
corrections to £y = 0 and E; = U, respectively {if these are not necessary we omit
them). Thus, for any configuration of ions, the total spectrum of the model calculated in the
first-order perturbation theory can be expressed as a combination of the spectra <(k, ), and
the ground-state energy corresponding to fixed values N, and N; can be found such that we
gradually occupy by electrons the low-lying energy levels from e(k, {). The most important
question to ask now is which configuration of ions minimizes the energy E(N., N, w)
if the total electron number and the total ion number are fixed, or in other words which
spectrum calculated by using the procedure outlined above leads to the lowest energy of
the system. It can be shown [10] that it is a configuration for which the degeneracy of
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the energy levels £, and E; is completely removed, ie. (see (9), (10); a configuration
with the largest connected cluster of unoccupied sites (E; = 0) or a configuration with the
largest connected cluster of occupied sites (E» = U). Any division of the largest connected
cluster of unoccupied (occupied) sites into two connected clusters mutually separated by
occupied (unoccupied) sites increases the energy of the system, and thus the ground-state
configuration for {U/| — oo will be the configuration with the largest connected cluster of
unoccupied (occupied) sites—the segregated phase. '

4. Finite interaction strength

To analyse some energetic and structural ground-state properties of the Falicov—Kimball
moedel at large, but finite, U we use the second-order degenerate perturbation theory [91.
The scheme consists of diagonalizing the secular matrix with elements

Vnmvmn
= Vo + Z E'O' E(m (14)

where V refers to a perturbation term, n, n’ are labels for umperturbed degenerate ground
states, and m labels states not degenerate with the ground states. For the Falicov—-Kimball
model this scheme leads to the following secular equation:

det(T' — El) =0, (15)

where the matrix elements T},,. of the N;- or (L — Ni)-square matrix T’ are given by
, 1
T =t £ 5 > tumtma. (16)
m

If we calculate the second order corrections to the energy level E| = 0 (E2 = U),
then n and n’ in (16) denote unoccupied (occupied) sites, whereas m denotes occupied
(unoccupied) sites and the correct sign in front of the sum is — (+). Before the proof of
some general properties of the one-dimensional Falicov—Kimball model in the limit of strong
correlations let us first test the convenience of the above-outlined perturbation procedure
for studying the ground-state phase diagram of the model.

In figure 1 we present the phase diagram of the one-dimensional Falicov—Kimball model
calculated in the framework of perturbation theory for the segregated configuration and
all periodic configurations with N; = 1L and periods less than nine: wy; = {10...},
wp = {1100...}, w3 = {111000...}, wy = {110100...}, ws = {11110000...},
we = {11101000...}, wy = {11100100...}, wg = {11011000...}, wg = {11010100...},
wye = {11010010...}. For these periodic configurations the secular equation (15) is
enormously simplified and can be immediately solved. Putting electrons into the low-
lying energy levels of the new spectra, one can at once find energies corresponding to these
configurations. The phase diagram is then determined by comparing the energy of each
periodic phase with the energy of the segregated phase and plotting the lowest-energy state
as a function of the electron concentration n. and the interaction strength &/, The inset in
figure 1 shows the exact phase diagram of the model calculated numerically for the same ion
configurations using the method described in [7]. 'We see that perturbation results reproduce
surprisingly well the exact results obtained by Freericks and Falicov, even for relatively
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Figure 1. The phase diagram calculated for the segregated configuration and all periodic
configurations with ¥; = %L and periods less than nine. The inset shows the phase diagram
calcutated exactly using the method described in [7].
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Figure 2. The phase diagram calculated for ¢1, €2, €3, €4, €5, €6, €71 C8» CI0s €12+ C15+ €24y C60»
120, and the segregated configuration. A domain denoted 'mix’. is a mixture of many small
phases.

small values of interaction constant I/ ~ 5. The fact that perturbation results for I/ > 5
reproduce the exact results very well is obvicusly due to the theorem of Gerschgorin, which
works in these interval and which states that for any ion configuration the electron states are
split into two non-overlapping bands: the lower one bounded to [—2, 2], contains exactly
1 — n; states per site, the higher, bounded from below by U — 2, contains n; states per site,
which is in agreement with our perturbation results.

Let us now discuss in detail some structural ground-state properties of the model.
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Let N; be arbitrary, then the secular equation (15) for the segregated conﬁgufation
we = {11...100...0} takes the form

AMU—E -1 0 0 0
-1 -E -1 0 0
0 -1 —-E 1] 0
Dy=| . o : . |=0 (i7)
0 0 0 —E -1
0 0 0 -1 AMU-E
and it can be directly solved, with the result
€(n, N) = =2 cos[nm /(N + 1)] + [4A/U(N + 1)] sinzimr/(N + 1]
- [22N — 4/ UXN + 1)} sinjnr/(N + Dlcos[na /(N + 1)] (18)
where N = L — N;, A = =1, n = 1,2...L — Nj if the second-order corrections to

the (L — N;)-fold degenerate energy level E; = 0 are calculated and N = N;, A = 1,
n=12,..., N for the Ni-fold degenerate energy level E; = U. Comparing w, with
wa, W3, Ws one can see that the configurations w», ws, and ws are composed of %L, %L,
and %L segregated configurations of lengths 4, 6, and 8, and the length of the connected
clusters of occupied sites in these segregated configurations are 2, 3, and 4. Therefore, in the
strong-coupling limit the energy spectrum corresponding to ws;, ws, and ws may be directly
obtained using the expression (18). Certainly the same is true for other configurations of
this kind. In figure 2 we present the phase diagram of the model for the following periodic
configurations of this kind: ¢, ¢3, ¢4, €3, €5, €7, €, Cl0» €12, €15, €24, and the segregated
phase. Here we introduce a new general notation ¢; = {11...100...0...} for the periodic
configurations composed of connected clusters of occupied and unoccupied sites of length
i;e1 ={10,..}, ¢z = {1100...}, etc).

It is seen that all observations made by Freericks and Falicov for periodic phases with
N = %L and periods less than nine still hold: (1) the altemating phase {10...} is the ground
state at the half-filled band point (N, = N; = %L) for all values of interaction strength;
(2) the phase diagrams are enormously simplified as U/ increases and the segregated phase
becomes dominant; and (3) some phases (e.g., ¢7, cio } that disappear from the phase
diagram as U increases may reappear at larger values of {. Besides the observations of
Freericks and Falicov we find that new phases ¢5 ¢, ¢7,...are distributed between the
segregated phase w; and phases wg and wg, which are gradually suppressed (see figure 3).
Furthermore, for U/ > 8 the largest phase islands of the configurations ¢; (f =5, 6,...) are
distributed regularly in order of increasing #, and this trend still holds when further periodic
configurations with much [arger periods are added.

We observed that the configuration ¢,z is not the ground state for any value of U
and n.. The configuration ¢4 = {11...100...011.,.100...0} may however be obtained
such that we divide the segregated phase wy = {I1...100...0} into two identical parts.
The fact that this configuration is not present in the phase diagram of the model indicated
that division of the segregated phase into two identical parts is energetically unfavourabie,
As was mentioned in the previous section for |U| — oo it is energetically unfavourable
to divide the large connected cluster of occupied (unoccupied) sites into two connected
clusters of occupied (unoccupied) sites separated by unoccupied (occupied) sites and thus
the segregated phase was the ground state of the one-dimensional Falicov—Kimball model
for all electron concentrations except the specific values n, = 1 — n; and n, = n; . Next
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Figure 3. The phase diagram calculated for all configurations from figures 1 and 2. The broken
and full curves are lower bounds for the segregated configuration calculated for the transitions
wy — wp, and ws — wp, respectively,
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Figure 4. The critical interaction strength U, as a function of the electron- and ion-density ratio
e f(1 — ik

we show that unlike the case |U| — oo, for finite U there exists some critical value
of the electron concentration n., above which the segregated phase is unstable, and the
large connected cluster of occupied (unoccupied) sites divides into two connected clusters
mutually separated by unoccupied (occupied) sites. We give the analytical expression for
this boundary.

In the general case when the segregated phase consists of two large connected clusters

of occupied and unoccipied sites of length N; and L — W, the second-order corrections to
the (L — N;)-fold degenerate energy level E, = 0 are given by (18). Let us now investigate
how this energy spectrum (it is sufficient to consider only the case E; = 0 and U > 0, since
the other cases can be obtained by the application of the symmetries (7) and (8)) is changed
if the connected cluster of unoccupied sites in the segregated configuration is divided into
two connected clusters of unoccupied sites of lengths N, and N, mutually separated by one
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or more jons. In the second case the secular equatior {15) reduces to

~{JU-E -1 ... O 0 0 0 0
-1 -E ... 0 0 0 0 0
0 0 -E -1 0 0 0
0 0 -1 —1/U~E 0 0 0 =0
0 0 0 0 -YU-E -1 0
0 0 0 0 -1 ) 0
0 0o ... 0 0 0 0 .. —YU—E

(19)

and may be immediately solved since the correspohding determinant of the type L — N;
can be written as D, D, where determinants Dy and Dj of the type Ny and N, have the
form of the detertiiinant Dy (see {17)), which has already been examined. Therefore (using
the expression (18)), the energy spectrum corresponding to the configuration composed of
two conriected clustérs of unoccupied sites separated by two or more ions is given as a
combination of spectra €(n, ¥y) and e(n, Na).

Let us denote

T\ nx \ _ . sin{(m+ Plr/M + D]
5 (’”’ W) = "2%:-“’5 (M_+_1) =! sin[7/3(M + 1)) 20)

then the energy of m electrons placed in the m low Iymg energy levels of the spectrum
corresponding 1o the connécted cluster of unoccupied sites of iength M can be now written
a8

E(m. M) = . 2m v 7, 2M -4 g i3 |
m. M) =~ + D i (m‘ M + 1) Ty (m’ M+ 1) RUES
2 2M -4 , 3T\

XS( M—!—l) 4U2(M+1)2S(m’M+l)' 1)
For N, electrons (rcmembcr that Nc < L—Nj) the energy of the segregated configuration
w; with one connected cluster of unoccupled sites of length L — N; and the energy
of a conﬁgurauon wp,, which consists of two connected clusters of unoccupled sites
of lengths N, and Ny (N, + ‘N2 = L — N;) separated by two or more IOHS are thus
Ei(Ne, we) = E(Ne, L— Ny and Ep(N,, wp,) = E(ng, Ny) + E(Ne —ng, Na) respectively,
where ny in the gmund state with a fixed electron number N, must be chosen to minimize
the ground-state energy ED(NC, wp,). It can be obtained by taking the integer part of
(Ne + DN+ 1D/(L— N+ 2) Comparing these energies one can straightforwardly show
that for any electron concentration #, there exists a critical value U = U, of the interaction
strength below whlch Ep < E;, ie., for U < U, the segregated phase is unstable and the
transition ws; — wp, becomes energetwally favourable, A detailed analysis of the mequahty
Ep < E; made for afy division of the large connected cluster of unoccupied sites into two
connected clusters of unoccupled sites of lengths N\ and N, separated by two or more ions
shows that the lowest-energy conﬁguranon for I/ < U, is always the configuration with
Ny =L—N;—1and N; = 1, as it would be expected intuitively.
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Now, we are ready to give an analytical expression for the boundary U;(N,), below
which the segregated phase cannot be the ground state of the one-dimensional Falicov-
Kimball model, because the configurations wp, = {00...01...101...1} {where the length of
the connected cluster of unoccupied sites is L — Ny — 1 and the length of the first connected
cluster of occupied sites is at least two) always have lower energy than that corresponding
to ws.

The energy spectrum for €(n, wp,) is given as the combination of spectrum (18) with
N = L — N; — | and the single energy level —2/U/, therefore

EollNe, wo) = { ‘Z‘((::—L L f i—_f\:i)—- ) —2/U ;2: ie i f;[;. @
Here py is the integer part of
g =[(L - N)/m)eos™ [LU(L = M) - JLUL - WP - L2 - N; - D)} (23)
which is defined by the condition |
(g, L —N;— 1) =-2/U. (24)

Comparing (22) with the energy of the segregated phase E (N.,w;) we obtain the
analytic expression for the boundary Uc(N,}, below which the segregated phase cannot be
the ground state of the one-dimensional Falicov-Kimball model

U, = (b - Vb2 —ac)/2a (25)

where

a=S[Ne,w/(N+1)] = S(Ne — 1,n/N) (N=L~N)

b= [1/(N + D]{2Ne + S[Ne, 2 /(N + D]} ~ (1/N)[2(Ne — 1) + §(Ne — 1, 27/N)] -2

¢ = {S[Ne, /(N + 1)] = S[(Ne, 37/(N + D])}2N — 8)/(N + 1)* - [S(Ne — 1, /N)
— §(Ne - 1,37/N)J@N — 6)/N.

The critical interaction strength U, as a function of the electron- and ion-density ratio
n.f(1 — n;) is plotted in figure 4. We see that even for considerably large deviations from
the singular point n. /{1 —n;} = 1, the values U, are extremely large, which is in agreement
with results of Brandt [8]. On the other hand, it should be mentioned that our estimate of
the lower bound U~ = U, below which the segregated phase cannot be the ground state
of the model, is better than the estimate of Brandt, who investigated the stability of the
segregated phase with respect to ‘evaporation’. However, his estimate of the upper bound
U+, above which only the segregated phase is the ground state of the model, is quite good
for ne/(1 — n) > 0.5 and it together with our results for U, yields sharp bounds for the
segregated state. Of course, since our resulis were obtained in the strong-interaction limit
using perturbation theory, it is necessary to bound the phase diagram from below with some
physically reasonable value of the interaction strength U, above which the perturbation

procedure gives reasonable results. Tests, we made (see figure 1) show that this value
should be relative small (Up = 5).
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The critical value £/, was obtained for the case when a single unoccupied site and the
connected cluster of unoccupied sites of length L — N; — | were separated by V; = 2 ions.
Repeating the previous analysis for the case N; = | one can show with some more effort
that the energy spectrum corresponding to this configuration wp, is given as

e(n, wp,) = €(n, wp,) — 1/ UL — Np)] sin?[nm /(L ~ Ni)]/ cos[nm/(L — N;)]
forn=1,2,...,L—N;—1and
eé(n=L—N,wp)=-2/U.

Thus the ground state corresponding to wp, has for any electron number N, lower
energy than the ground state corresponding to wp, as one would expect.

" If these configuration are taken into account, then the area of stability of the segregated
phase is considerably reduced in the ground state phase diagram (see figure 3) but it is stll
large enough. Let us note that in the domain where the segregated configuration is stable,
the U dependence of the ground state energy (which follows from (18)) has qualitatively the
same form as the exact U dependence of the one-dimensional Hubbard model in the limit of
strong interactions [11]. The tofal &/ dependence of the one-dimensional Falicov—Kimball
model calculated for the phase diagram from figure 3 is shown in figure 5.

0,00 7 0.00
=003 - 005 j
-0.10 — 0,10 -
_,-0.155 <—0.15§
W .20 W g 20 ]
-025 - -0.25 -
~0.30 - -0.30 ~
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Figure 5. The U dependence of the ground-state Figure 6. The ground-state energy of the ome-

energy of the one-dimensional Falicov—Kimball model
calculated for the phase diagram shown in figure 3
(broken ¢urves) and for incoherent mixtures of the

dimensional Falicov—-Kimball model calculated for
incoherent mixtures of the segregated and period-two
phases as a function of 7.

segregated and period-two phases (full curves),

- It was shown above that for finite {/ there exists some critical value of the electron
concentration above which the segregated configuration ws cannot be the ground state of
the model, because there the configuration wp, always has lower energy than ws. One can
ask what happens for wp, for higher band fillings and there are ways to generalize our
previous ideas. For fixed N; = %L we examined all possible incoherent mixtures w™ " (N)
of the segregated configuration of length N and the alternating configuration of length L—N.
In agreement with (25) we have found that w'""(L) = w; is the ground state of the model
for U > U, = Uy, and below U, some incoherent mixture with N % L becomes stable. In
particular, w'"°*(N) (N < L) is stable in the narrow domain bounded by Uy and Uy..|,
where Uy and Uy can be obtained directly from the conditions E[N., w™"(N)] =
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E[Ne, w™P(N — 1)] and E[N., w™MN — D} = E[N,, w™™(¥ — 2)]. Furthermore
we found that neither periodic configuration from the phase diagram shown in figure 3,
excluding the altemnating phase can be the ground state of the model if these incoherent
mixtures are taken into account, and the alternating phase will be the ground state only for
Ne = 3L. To investigate whether the ground state corresponding to w'™ js conducting or
insulating, we compute the quantity Ap = E(N. + 1, N;) + E(N. — L, M) — 2E(N,, Ny).
(The N, dependence of the ground-state energy calculated for these incoherent mixtures is
plotted in figure 6 for three different interaction strengths.) Using the criterion of Kenri'gdy
and Lieb [3], which states that there is a gap of the second kind at N, N; if Aw 2 € > 0,
with ¢ being independent of the size of the system, we arrived at the conclusion that for all
Ne < 3 L the ground state is conducting.

Fma]ly fet us briefly discuss the model for #; — 0 (; — 1). For N; =2 we found that
from among alt poss:ble distributions of N; ions and L — N; unoccupied sites, the segregated
configuration is the ground state for U > U, where U, is given by (25), If U < U the
configuration {10100 ...0} is stable. Analogously for all possible distributions of three ions
and L — 3 unoccupied sites we found that the segregated phase is stable if Uf > Uc, In the
domain U, < U < U, the configuration w = {110100...0} is the ground state and for
U < U, the configuration w’ = {1010100..,0} is stable. Here U,, is given by (25) and
U,, can be obtained from the condition E{N., w} = E(N,, w’).
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